FLOW CHART FOR GASES

FLOW CHART FOR GASES

How to calculate (example):
How to calculate the flow coefficient (Kv) of a solenoid valve to obtain an air flow at $\mathbf{2 0}{ }^{\circ} \mathbf{C}$ of $\mathbf{5 0} \mathbf{N m} \mathbf{3} / \mathbf{h}$ with $\mathbf{7}$ bar pressure (i.e. $\mathbf{8}$ Bar relative pressure), a pressure drop $(\Delta \mathrm{p})$ of 2.5 bar, and a specific gravity of $\mathbf{1 . 2 9}$.
-Draw a vertical straight line from the value 2.5 on the Δp axis down to the pressure curve (p 1) of $\mathbf{8}$ Bar. Then horizontally transfer this break point to the vertical line of $\Delta p=0.1$.
-Draw a straight line from this new break point up to the point 50 on the flow rate axis and prolong it up to the mark line $\mathbf{n}^{\circ} 2$.
-Draw a straight line intersecting the values $\mathbf{2 0}$ and $\mathbf{1 . 2 9}$ on the axis of temperature and specific gravity. Prolong this line up to the mark line $\mathbf{n}^{\circ} \mathbf{1}$.
-Draw a straight line between the break points of mark lines $\mathbf{n}^{\circ} \mathbf{1}$ and 2. This line intersects the Kv axis and gives you the value you were looking for which is: $\mathbf{8 L / m i n}$

www.solenoid-valve.world

FLOW CHART FOR LIQUIDS

FLOW CHART FOR LIQUIDS

How to calculate

Example $n^{\circ} 1$

How to calculate the flow coefficient (Kv) of a solenoid valve to obtain a water flow of $\mathbf{1 0 0} \mathbf{L} / \mathbf{m i n}$ with $\mathbf{5}$ Bar pressure drop. Specific gravity of water $=\mathbf{1 k g} / \mathbf{d m}^{3}$
-Draw a straight line intersecting the values $\mathbf{5}$ and $\mathbf{1 0 0}$ on the axis of pressure drop and flow rate.
-Prolong this line up to the mark line.
-Draw a straight-line intersecting value 1 on the axis of specific gravity up to the break point of the first straight line with the mark line. -This line intersects the Kv axis and gives you the value you were looking for: $\mathbf{4 5} \mathbf{L} / \mathbf{m i n}$

Example $\mathrm{n}^{\circ} 2$

How to calculate the flow coefficient (Kv) of a solenoid valve to obtain a water flow of $\mathbf{2 0} \mathbf{L} / \mathbf{m i n}$ with 4 Bar pressure drop. Specific gravity of water $=\mathbf{1} \mathbf{k g} / \mathbf{d m}^{\mathbf{3}}$
-Draw a straight line intersecting the values $\mathbf{1}$ and $\mathbf{2 0}$ on the axis of specific gravity and Kv.
-Prolong this line up to the mark line.
-Draw a straight line intersecting the value 4 on the axis of pressure drop and the break point of the first straight line with the mark line.
-This line intersects the axis of flow rate and gives you the value you were looking for: $\mathbf{4 0} \mathbf{L} / \mathbf{m i n}$

